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Fig. 1: Screenshots of the Laikago hurdling task. Based on a
policy produced by our method, CTO-RL, the robot jumps onto the
obstacle, and performs a second jump onto the floor to continue
running. CTO-RL guides the learning with trajectories obtained from
curricular trajectory optimization (CTO) to a reinforcement learning
(RL) algorithm.

Abstract— We combine analytical and learning-based techniques
to help researchers solve challenging robot locomotion problems.
Specifically, we explore the combination of curricular trajectory
optimization (CTO) and deep reinforcement learning (RL) for
quadruped hurdling tasks. Our framework enables engineers
and researchers to get the generalization capabilities of learned
policies and the efficiency of trajectory optimization. We gener-
ate trajectories from a curricular optimization algorithm, as an
imitation learning supervisor to an RL algorithm. We evaluate
our approach on various robot hurdling tasks where the robot
needs to jump over an obstacle of varying size and location. We
achieve greater sample efficiency than state-of-the-art reinforce-
ment learning when solving the task, and significantly greater
performance than the original trajectories. Results can be seen
at https://sites.google.com/usc.edu/cto-rl.

Robot locomotion tasks such as running and jumping are
challenging as they are highly dynamic. Often, we do not have
highly accurate models of the environment or robot, to enable
methods like model-predictive control [1]. End-to-end learning
is not very robust to large changes in the task or environment,
and can be sample inefficient.

Here, our method, CTO-RL, addresses robot hurdling with a
robust feedback policy, using a two-step procedure. In the first
step, we apply trajectory optimization (we use CMA-ES [2]) on
a curriculum of hurdling environments with increasing difficulty.
In the second part, we distill these trajectories into a feedback
control policy by combining imitation and task rewards similar
to DeepMimic [3]. This framework allows us to distill a finite
set of trajectories into a feedback policy that generalizes across
a continuous task range. Additionally, we remove the need for
motion priors for highly dynamic skills.

The main contributions of this work are ‘CTO’ to generate tra-
jectories, and the ‘CTO-RL’ algorithm that uses these trajectories
to train robust feedback policies that outperforms state-of-the-art
RL on hurdling tasks.
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I. GUIDED LEARNING WITH CURRICULAR TRAJECTORY
OPTIMIZATION

In curricular trajectory optimization, we solve M tasks se-
quentially starting from the easiest to the hardest. We store the
solution with the highest objective of each task in the buffer
B = {(sk,uk, vk)}M−1

k=0 , that consists of state trajectories sk,
action trajectories uk and task variables vk ∼ V .

We use B as reference trajectories for training a deep neural
network policy ut = πθ(ot). The total reward at time step t is a
weighted sum of an imitation reward rimi

t and a task reward rtask
t .

i.e., rt = wIr
imi
t +(1−wI)rtask

t . Our imitation reward is primarily
for imitating parts of the robot state st. When the robot is not
near the start state of the imitation trajectory, we compare against
the first reference state, rimi

t = rimi
t (st, ŝ0). The imitation reward

incentivizes the agent to match the joint positions qt, velocities
q̇t, and base position to the reference motion pt. During training,
we sample task variable vi and choose an imitation trajectory
as the stage that is the closest trajectory that is harder to solve.

II. EXPERIMENTS

We show experiments for two tasks with a Laikago robot:
Jump up, (jump on top of a block), and Hurdle (get over a
block). The block can be of any height in a given range, at any
location along the path, and is only sensed by the robot when
within the sensing range. The sensor readings contain height
(≤ 0.4m), width (0.6m for hurdling) and distance from the block
(sensing range 4m). A rollout is successful if the robot crosses
2 meters past the edge of the obstacle without overturning or
rolling. The task is solved when a policy achieves a success rate
≥ 95%, averaged over all seeds.

The task reward incentivises a positive x-velocity ṗxt , and
penalises control input ut & deviation of torso orientation βt
from the standing position β̂t. This is the same across curricular
trajectory optimization (CTO) and RL and is the same for
both tasks and all task variations. During training, we create
a curriculum of M = 9 interpolated environments between 0
and 0.4m height with a difference of 0.05m between successive
environments. At every reset, we sample a block height hs ∼
[0, 0.4], and x-position xs ∼ [0, 10] in metres. We choose a
corresponding imitation trajectory with the smallest step height
larger than hs.

When compared to vanilla optimization, neither regular CMA-
ES (no curriculum) nor direct trajectory optimization are able
to solve this task with the same amount of iterations. We
compare our method against an APPO baseline with the same
implementation and hyperparameters, but without a trajectory
buffer or imitation. The baseline does not completely solve either
task. The difference in success rates for the difficult tasks can
be seen when we break down success rates by height, in Fig. 3.

https://sites.google.com/usc.edu/cto-rl


Fig. 2: Schematic of CTO-RL. Left: CMA-ES is used to generate reference trajectories for M different environments. These trajectories are
stored in the trajectory buffer B. Right: Reference trajectories are sampled from the buffer and used for the imitation reward. The RL agent uses
the combined IL and Task rewards to update its parameters and find the optimal policy.
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(a) Jump up
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(b) Hurdle
Fig. 3: Success rate measured over step height, with the trained
models for the jump up and hurdle tasks. Both the baseline and our
method have a high success rate for small step heights. However, the
baseline performance worsens considerably as the task gets harder.

Smaller step heights are easier to jump over, giving higher
baseline success rates. As training proceeds, our algorithm
naturally learns to move away from the IL component and favor
the RL component without explicit hand-crafted interpolation.
Our approach achieves an average velocity of about 2-3x faster
than the original trajectories.
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